A blog set out to explore, archive & relate plastic pollution happening world-wide, while learning about on-going efforts and solutions to help break free of our addiction to single-use plastics & sharing this awareness with a community of clean water lovers everywhere!

Monday, February 16, 2015

Humans are putting 8 million metric tons of plastic in the oceans — annually

Published in the Washington Post by Chris Mooney - Feb. 12, 2015

Late last  year we learned that, thanks to human beings, the oceans are carrying at least 5 trillion pieces of floating plastic — or nearly 700 pieces per human alive on the planet. In weight, that’s some 250,000 tons of the stuff.

But new research suggests that even that haul is probably a serious underestimate. In a paper published this week in the journal Science, Jenna Jambeck of the University of Georgia and a group of colleagues tried to estimate the total amount of plastic going into the oceans annually from 192 coastal countries, whose total population is 6.4 billion.

People in these countries within 50 kilometers of the coast, the study estimates, produced 99.5 million metric tons of plastic waste in 2010 — and 31.9 of those million tons, the study estimates, were in some way mismanaged.

Thus, the authors calculate, each year about 4.8 million to 12.7 million metric tons of plastic are entering the oceans — for a midpoint figure of around 8 million metric tons. This is vastly higher than the number cited above — and moreover, it’s an annual number.

“It’s much larger than what they’re finding in the water,” says Jambeck. “But of course, as you know, they only can count what they find, and they only can find where they look.”

Here’s an infographic, courtesy of the researchers, that takes you through the process of measuring global plastic production, refining the estimate down to plastic waste in coastal regions, and then eventually estimating how much plastic winds up in the oceans (and how much we measure at the surface):
So what does 8 million metric tons of plastic actually mean? And is there any way to state such a gigantic figure in human terms?

“It’s five bags filled with plastic for every foot of coastline in the world,” says Jambeck.
So, why is so much of this stuff getting into the ocean? The reason, the paper asserts, boils down to a massive global waste management problem.

 The countries estimated to have the greatest mismanagement issues for plastic waste tend to be developing nations — China, Indonesia, the Philippines, Vietnam — with large and growing coastal populations, where waste management hasn’t kept pace with the population explosion.

“Sixteen of the top 20 producers are middle-income countries, where fast economic growth is likely occurring but waste management infrastructure is lacking,” notes the paper.

In other words, this is not just a lot of plastic bags getting swept up by wind and deposited at sea. “You have, from the random plastic bag blows to … they pretty much dispose of it right there on the coastline, right there on the bank of a river,” says Jambeck. “That’s the variability that you might find.”

The United States comes in 20th on the global plastic dumping list. While this country does have advanced waste processing, it also has a very large coastal population. (The top 20 countries contribute 83 percent of the world’s total mismanaged plastic, the study estimates.)

Ocean plastic has many consequences. It can kill fish and birds through entrainment or strangulation and can also be ingested by marine creatures and enter into the food chain, where it may have many unknown effects.

This is not a new issue to the global plastics industry. A group of plastics associations from various countries recently released a declaration on the matter, outlining a number of potential solutions to the problem and noting that “plastics do not belong in the world’s oceans and should not be littered — plastics should be responsibly used, reused, recycled and finally recovered for their energy value.”

The Science paper also has a forward projection: The plastic problem is expected to get worse.  By 2025, U.S. mismanaged plastic waste is expected to grow by 22 percent, and in the five biggest countries for the problem, it’s expected to double.

“We will not reach a global ‘peak waste’ before 2100,” notes the paper.

Phthalates are everywhere, and the health risks are worrying. How bad are they really?

Published in The Guardian by Amy Westervelt, Feb. 10, 2015

Phthalates are everywhere, and a tidal wave of new research has documented their wide-ranging negative health impacts, but what are the real risks?
woman applying lipstick in front of mirror
Phthalates are used as binders and plasticizers in everyday items, including cosmetics. How safe are they? Photograph: Tom Jenkins/the Guardian
Lately, it seems like a new study on the health impacts of phthalates comes out every week. The chemicals are everywhere: they’re used in everything from household cleaners to food packaging to fragrance, cosmetics, and personal-care products.

In 2003, researchers at the US Center for Disease Control documented widespread exposure to a high level of a group of chemicals called phthalates (pdf) across the general American public. The chemicals act as binding agents and also make plastics flexible.

The CDC recommended that the chemicals and their effect on human health be studied further, a recommendation that helped unlock funding for dozens of studies focused on phthalates, resulting in a tidal wave of recently published reports that largely indicate the CDC’s concern was warranted.

The CDC’s warning on phthalates also caught the attention of senators Barbara Boxer and former US representative Henry Waxman, who included the class of chemicals in their Consumer Product Safety bill, passed in 2008. That bill banned the use of some phthalates in children’s products, passed an interim ban on others, and required that the Consumer Product Safety Commission take a close look at the chemicals.
The resulting report on phthalates – the Chronic Hazard Advisory Panel (Chap) on Phthalates (pdf) – was finalized in late 2014, and despite the chemical industry’s efforts to soften the commission’s recommendations, public health advocates are largely pleased with the effort, a rarity when it comes to government-penned reports on chemical safety.

With academic studies and policy reports consistently voicing concern over the health impacts of phthalates, and consumers beginning to sit up and take notice, regulation may not be far behind.

“The Chap report is the first major regulatory document in the federal government that’s highlighting the extent of the new science on the risks of phthalates,” says Erik Olson, senior strategic director of food and agriculture and health programs for the Natural Resources Defense Council. “The fact that the commission is looking both at phthalates as a group and at the toxicology of individual phthalates is really important,” he says.
Olson was the deputy staff director for the US Senate’s environment and public works committee when the Consumer Product Safety Bill was written and passed. Between the Chap report, a National Academy of Sciences report looking at phthalates as a class and what he calls “the tidal wave of research that’s been coming out fast and furious” in the past year or so, he said, “we’re getting past the phase of complete denial from the industry – they can no longer claim that there’s no risk at all with phthalates.”


What’s the harm?

Name a major public health concern over the past two decades and there’s likely some link to phthalates exposure.

In the past few years, researchers have linked phthalates to asthma, attention-deficit hyperactivity disorder, breast cancer, obesity and type II diabetes, low IQ, neurodevelopmental issues, behavioral issues, autism spectrum disorders, altered reproductive development and male fertility issues.

While phthalates is a huge class of chemicals and nowhere near every chemical in the class has been studied, several have been shown to have negative health impacts: butyl benzyl phthalate (BBzP), dibutyl phthalate (DnBP), di-2-ethylhexyl phthalate (DEHP), diethyl phthalate (DEP), di-butyl phthalate (DBP), benzyl butyl phthalate (BBP), diisobutyl phthalate (DiBP), diisononyl phthalate (DiNP), di-n-octyl phthalate (DnOP), dipentyl phthalate (DPP), di-isobutyl phthalate (DiBP), di-isononyl phthalate (DiNP), di-n-octyl phthalate (DnOP), di-isohexyl phthalate, dicyclohexyl phthalate (DcHP), and di-isoheptyl phthalate.
Enough distinct phthalates have been studied to indicate that companies should proceed with caution when using any chemical in the phthalate class, particularly in products for pregnant women or young children, whom the research has indicated are the most vulnerable to the effects of phthalates.

One of the first phthalates to raise a red flag, DEHP, was replaced in hundreds of consumer products with DiNP, only for researchers to discover a few years later that exposure to DiNP is correlated to male genital birth defects and impaired reproductive function in adult males.

Public health advocates hope to learn from the mistakes made in regulating bisphenol A (BPA) as momentum gathers behind the regulation of phthalates, and ensure that one harmful phthalate isn’t just replaced with another over and over again.

BPA was singled out as the sole chemical of concern in the bisphenol group, and regulated as such. Manufacturers largely replaced BPA with bisphenol S (BPS), which researchers are now discovering is equally as problematic as BPA.

With phthalates, the research has come before any sort of regulation – companies are not even required to list phthalates on consumer product labels – and legislators are already looking at the entire class of chemicals, as well as any particularly bad ones.
‘Milking machines use a lot of plastic and DEHP is free and very lipophilic (fat soluble), and milk is full of lipids, so it just pulls the DEHP out of the plastic tubing and into the milk,’ explains Robin Whyatt, professor of environmental health sciences at the Columbia University Medical Center. Photograph: Gary Roebuck/Alamy

No escape

Both because of their ubiquitous usage and because they are not listed on product labels, phthalates are next to impossible to avoid. They are in household items (vinyl flooring), personal care products (hair care, body wash, some cosmetics), fragrance, household cleaners, and food. Even for those who either avoid these products or buy phthalate-free variations, phthalates lurk in unexpected places.

In food, for example, even milk packaged in glass may have passed through plastic tubes on its way from the cow to the bottle, taking DEHP along with it. “Milking machines use a lot of plastic and DEHP is free and very lipophilic (fat soluble), and milk is full of lipids, so it just pulls the DEHP out of the plastic tubing and into the milk,” explains Robin Whyatt, professor of environmental health sciences at the Columbia University Medical Center and the lead author on several landmark phthalate studies. “So my guess would be that milk is a pretty important source of dietary exposure to DEHP.”

Spices are another surprising source of phthalate exposure. A 2013 study, published in the journal Nature, compared the phthalate levels of two groups, one eating their regular diet but armed with a handout of recommendations for ways to reduce BPA and phthalate exposure in their diet, and the other eating a catered diet consisting solely of local, organic fare, none of which had touched plastic packaging.

The study authors were shocked to find that DEHP levels in the local, organic group jumped 2,377% over the course of the experiment. Determined to figure out why, the researchers tested all of the foods consumed by the group and found high levels of the phthalate in dairy products and various organic, imported spices.

“The fact is you can’t know if a food has phthalates in it – you can suspect, but it’s almost impossible to know,” Olson says. “That makes them hard to avoid, which is why you need a regulatory framework.”
Phthalates are used as binders and plasticizers in everything from household cleaners to food packaging to fragrance, cosmetics, and personal care products. Photograph: Nickolas Muray/Getty Images

What now?

Regulation of consumer products moves slowly in the US, and that has proven to be especially true when it comes to chemicals. Despite the recent movement on phthalates, Olson says it is likely to be a long time before we have the sort of wide-reaching framework that would adequately protect the public from harmful exposure.
That doesn’t mean all is lost in the meantime. State and federal regulations have already eliminated the chemicals from some products, and that list is likely to grow. California’s Proposition 65 now includes four phthalates – DINP, DEHP, DBP and BBP – under its labeling requirements, and the state’s Office of Environmental Health Hazard Assessment (OEHHA) recently proposed changes to Prop 65’s warning requirements, which would require manufacturers to list specific chemicals in their warnings and make those warnings more detailed (currently the warnings are vague, stating only “this product [or building] contains substances known by the state of California to cause cancer”).

“Prop 65 will be a driving force for change on phthalates,” Olson says. “Companies don’t like to put warning labels on their products.”

Consumers can also take matters into their own hands by avoiding products packaged in “recycling-code-3” plastic, products that include the vague ingredient “fragrance” on their label, and purchasing organic products packaged in glass as much as possible.

Whyatt also recommends that consumers remove any food packaged in plastic from its packaging and place them in glass. “DEHP continues to leech over time, so you do actually reduce exposure by changing the storage container, even if it’s been in plastic before you bought it,” she says. “All the DEHP has probably not come out yet by the time you get it home. And if there’s still DEHP in there, it’s probably still leeching out, so you can at least reduce your exposure some extent.”

“If we start by addressing the products where we know there’s significant exposure to phthalates, and we start with the most vulnerable communities – pregnant women and children – we can make a real difference,” Olson said. “We could take care of a lot of food exposure through FDA regulation and toys through the Consumer Product Safety Commission, and that’s a lot. It’s not all, but it’s a good chunk.”
‘We could take care of a lot of food exposure through FDA regulation and toys through the Consumer Product Safety Commission, and that’s a lot. It’s not all, but it’s a good chunk,’ says Erik Olson of the Natural Resources Defense Council. Photograph: Alamy
Retailers could also play a significant role, as they have with other chemicals of concern. Target and Walmart both launched initiatives to reduce or eliminate toxic chemicals from their shelves last year. Both retailers have said they will make evidence-based purchasing decisions to protect their customers’ health. With a mountain of scientific evidence piling up on phthalates, it can’t be long before consumers begin to put pressure on retailers and retailers in turn push their suppliers to find both alternatives to phthalates and ways to remove the chemicals from their products altogether.

Phthalates can fairly simply be removed altogether from products, with no replacement, according to “green” chemist Bruce Akers. It’s when the chemicals are used to create tubing or packaging that eliminating them becomes tougher: “If you want soft, squeezable plastic, you’re using phthalates,” Akers says.

But according to Whyatt, companies could be using flexible polymers instead. “There are flexible polymers that don’t require a plasticizer – they exist,” she says. “They haven’t been studied really, so we need to know more, but they probably do not leech the way phthalates do. The problem with phthalates as plasticizers is that they’re free floating, they don’t attach to the polymer, so they leech easily. If you have a flexible polymer that shouldn’t happen.”
Despite the size of the issue, Olson remains positive. “We’ve turned a corner on the regulation of phthalates,” he says. “They’re extremely widely used in the economy and it won’t be overnight that we’ll see widespread phase-outs, but clearly we’ve crossed the river and we’re now at the point of debating exactly which uses need to go and where we can use alternatives.”

Consumer Packaging And The Environment: Report Finds Few Leaders & Many Laggards In fast Food, Beverage, And Consumer Goods Industries

As you Sow & NRDC: Starbucks, McDonalds, Coca-Cola, PepsiCo, Nestle Waters NA, New Belgium Lead Pack; Increasing Amounts of Plastic Packaging A Major Contributor to Ocean Pollution.

Published January 30, 2015  in Investorideas.com - renewable energy stocks newswire

While plastic packaging is the fastest growing form of packaging in the U.S. in large part due to the popularity of fast food and consumer beverages, only 14 percent of it is recycled. That contributes to an overall waste of $11.4 billion in potential recycling revenue every year, according to a new report examining packaging used by fast food, beverage, and consumer goods/grocery companies. The report, issued today by As You Sow and the Natural Resources Defense Council (NRDC), reviews the packaging practices of 47 fast food/quick service restaurant (QSR) chains, beverage companies, and consumer good/grocery companies, and highlights leaders and laggards in the field.

Waste and Opportunity 2015: Environmental Progress and Challenges in Food, Beverage, and Consumer Goods Packaging (available online at www.asyousow.org/recycling and http://www.nrdc.org/business/consumer-goods-packaging.asp) finds that few companies have robust sustainable packaging policies or system-wide programs to recycle their packages.

According to the report, far more brand leadership to boost lagging U.S. recycling rates and enhance sustainability of packaging is needed to help ensure that packaging is manufactured and disposed of responsibly. In addition to wasting valuable material, failure to recycle packaging contributes to the problem of pollution of oceans, lakes, and rivers, and it misses the opportunity to create new green recycling jobs.

Significantly, none of the 47 companies attained the reports highest Best Practices status.
Packaging practices in each industry sector were analyzed based on attributes including types of material used; whether those materials are recyclable, compostable, and/or made of recycled content; and what the companies are actually doing to promote recycling of their packages. Key findings of the As You Sow/NRDC report include:

Fast food/QSR company leaders and laggards:
  • Starbucks and McDonalds were cited for Better Practices.
  • Dunkin Brands, Subway, Chick-fil-A, Chipotle, Panera Bread, and Yum! Brands were categorized as ?Needs Improvement.?
  • Arbys, Quizno?s, Burger King, Wendys, Jack in the Box, Dairy Queen, Dominos Pizza, and Papa John?s Pizza were identified as ?Poor? for showing little to no leadership on packaging sustainability, based on information they make public .
  • The report shows that, with the exception of Starbucks, none of the QSR brands analyzed has aggressively sought front-of-house recycling for part or all of its packaging, system-wide.
  • The small food chain ?Pret A Manger, with 60 sites nationwide, is the only company that offers front-of-house recycling and composting at all of its U.S. locations.
Beverage company leaders and laggards:
  • New Belgium Brewing, Coca-Cola, Nestlé Waters NA, and PepsiCo were cited for ?Better Practices.?
  • Dr Pepper Snapple Group, Diageo, and Anheuser Busch were categorized as ?Needs Improvement.?
  • Heineken, MillerCoors, Boston Beer, and Red Bull were identified as ?Poor? for showing little to no leadership on packaging sustainability, based on information they make public.
The list of consumer goods/grocery companies examined in the report includes: Campbell Soup Co., Clorox Co., Colgate-Palmolive Co., ConAgra, Dean Foods, General Mills, Johnson & Johnson, Kellogg Co., Kraft Foods Group Inc., Kroger Co., Mondelez International, Nestlé USA, Procter & Gamble Co. , Safeway Inc., Smithfield Foods Inc., SuperValu Inc., Target Corp., Unilever PLC, Walmart Stores Inc., and Whole Foods Market.

Examples of consumer goods companies and grocers taking proactive steps on packaging include:

  • Walmart was cited for achieving its commitment to reduce packaging across its global supply chain by 5 percent, and its goal of increasing its use of postconsumer recycled plastic in products and packaging by 3 billion pounds by 2020.
  • Procter & Gamble has agreed to make 90 percent of its packaging recyclable by 2020.
  • Colgate-Palmolive has agreed to make packaging for three of four product categories recyclable by 2020.
  • Unilever committed to increase post-consumer recycling of its packaging 15 percent by 2020 in its top 14 global markets.
Conrad MacKerron, senior vice president and report author, As You Sow, said: ?We found that most leading U.S. fast food, beverage, and packaged goods are coming up significantly short of where they should be when it comes to the environmental aspects of packaging. These companies have not sufficiently prioritized packaging source reduction, recyclability, compostability, recycled content, and recycling policies. Increased attention to these key attributes of packaging sustainability would result in more efficient utilization of postconsumer packaging, higher U.S. recycling rates, reduced ocean plastic pollution, and new green recycling jobs.

The As You Sow/NRDC report shows that while each of these sectors can do much more to increase recycling of the packages they produce, fast food/QSR industries are a particular concern because of the contribution of plastic packaging to plastic pollution in the oceans and other aquatic environments. Plastic litter from takeout orders ? including cups, plates, and straws ? not only contribute to urban blight but are often swept into waterways and oceans, where they partially degrade and harm marine life. A Clean Water Action study of street litter in four Bay Area cities found that the biggest source of street litter (49 percent) was from fast food.

Darby Hoover, senior resource specialist and packaging report project editor, Natural Resources Defense Council, said: ?Single-use food and beverage packaging is a prime component of the plastic pollution in our oceans and waterways, which kills and injures marine life and poses a potential threat to human health. Companies have an opportunity and an obligation to curb this pollution. Better packaging design and improved support and adoption of recycling are key to turning the tide on this unnecessary waste.

Andrew Behar, CEO, As You Sow, said: ?U.S.-based companies that take responsibility for financing the recycling of packaging in scores of other countries fight that responsibility here in the U.S. without offering viable alternatives. This industry foot-dragging is one of the primary reasons we recycle only 14 percent of plastic packaging in the U.S. The more we boost recycling rates, the more we reduce the use of virgin natural resources and mitigate emissions that contribute to climate change.

In addition to assessing individual brand performance, the study also analyzed systemic issues raising barriers to higher packaging recycling and composting rates, stating that:
  • A far smaller portion of the U.S. population has convenient access to curbside recycling than previously believed.
  • A technical glitch is preventing vast amounts of black plastic containers commonly used in QSRs from being recycled.
  • Significant amounts of packaging can be made compostable, but composting needs to be significantly expanded in U.S. communities.
  • Increasingly contaminated streams of recyclables are preventing readily recyclable materials such as plastic PET bottles from being more widely recycled.

As You Sow is a nonprofit organization that promotes environmental and social corporate responsibility through shareholder advocacy, coalition building, and innovative legal strategies. For more information visit www.asyousow.org.

The Natural Resources Defense Council (NRDC) is an international nonprofit environmental organization with more than 1.4 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world's natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Bozeman, MT, and Beijing. Visit us at www.nrdc.org and follow us on Twitter @NRDC.

Patrick Mitchell, (703) 276-3266 or pmitchell@hastingsgroup.com.
A streaming audio replay of this news event will be available as of 5 p.m. EST on January 29, 2015 at www.asyousow.org/recycling. The report will be available at www.asyousow.org/recycling and http://www.nrdc.org/business/consumer-goods-packaging.asp.

Thursday, February 5, 2015

New Link in the Food Chain? Marine Plastic Pollution and Seafood Safety

Published in Environmental Health Perspectives | February 2015 by Nate Seltenrich

Nate Seltenrich covers science and the environment from Petaluma, CA. His work has appeared in High Country News, Sierra, Yale Environment 360, Earth Island Journal, and other regional and national publications.

PDF icon PDF Version (4.4 MB)
In recent years plastic pollution in the ocean has become a significant environmental concern for governments, scientists, nongovernmental organizations, and members of the public worldwide. A December 2014 study derived from six years of research by the 5 Gyres Institute estimated that 5.25 trillion plastic particles weighing some 269,000 tons are floating on the surface of the sea.1

At the same time, plastics in consumer products have become subject to increasing scrutiny regarding their potential effects on human health. Bisphenol A (BPA),2 a component of polycarbonate plastics and suspected endocrine disruptor, is one of the most widely known chemicals of interest. But BPA is only one of many monomers, plasticizers, flame retardants, antimicrobials, and other chemicals used in plastics manufacturing3 that are able to migrate into the environment.

At the junction of these two lines of inquiry is an emerging third field that is in many ways even more complex and less well understood: investigating human exposures to and potential health effects of plastics that have entered the marine food chain. Studies have demonstrated plastics’ tendency to sorb (take up) persistent, bioaccumulative, and toxic substances, which are present in trace quantities in almost all water bodies.4

The constituents of plastics, as well as the chemicals and metals they sorb, can travel into the bodies of marine organisms upon consumption,5,6,7,8,9 where they may concentrate and climb the food chain, ultimately into humans. This topic has attracted interest and funding from the U.S.

Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Academy of Sciences (NAS), as well as researchers, nonprofit groups, and institutions around the world.

At this point “there are more questions than answers,” says Richard Thompson, a professor of marine science and engineering at England’s Plymouth University. Thompson coined the term “microplastics” in 200410 and later undertook a three-year study of these particles in the marine environment for the UK’s Department of Environment, Food, and Rural Affairs.11,12,13 “From a human perspective,” he says, “at the moment I think there’s cause for concern rather than cause for alarm.”

Viewpoints on the human health risks of marine debris are nearly as complex as the underlying science, as was evident at an inaugural EPA and NAS symposium on the topic held in Washington, DC, in April 2014.

In addition to myriad small details, the researchers in attendance considered an overarching question: Within the context of limited oceanographic research funding, the variety of other problems affecting ocean health (including overfishing and acidification), and the extent of humans’ daily and direct exposures to potentially harmful chemicals from consumer plastics and other sources—how concerned should we be about marine plastics as far as human health goes?

Researchers don’t yet have an answer, even if they believe they’re asking the right question. As EPA chemist Richard Engler concluded in a 2012 review, “While current research cannot quantify the amount, plastic in the ocean does appear to contribute to [persistent, bioaccumulative, and toxic substances] in the human diet.”14


Plastic Vectors

The path from plastic pollution to chemical exposure through seafood is a long one, figuratively and often literally, and tracing all the individual steps in that theoretical journey is not the same as identifying human health effects, researchers say. Actual exposures, which are determined by innumerable variables along the way, including seafood consumption, still need to be quantified. Then these levels must be evaluated within broader contexts of consumer plastic use and environmental pollutant levels.

Exposures to plastic debris have been clearly documented for marine organisms at all trophic levels (i.e., positions within the food chain), says Bradley Clarke, a lecturer at RMIT University in Melbourne, Australia. “What remains to be determined is whether this exposure increases the body burden of … marine organisms in the natural environment and if it does, by what magnitude,” Clarke says.

There is a lack of controlled experimental work completed on the topic, Clarke adds, and it’s very difficult to disentangle pollutant exposures and bioaccumulation via plastic versus food and environmental sources. Uncertainties also surround the transfer of plastic additives to marine organisms and resultant human exposures through seafood.

We do know that plastic has become nearly ubiquitous on the planet. It has washed up on the most remote beaches, amassed in distant gyres, and been discovered in the bodies of dead organisms from fish to birds to whales.15,16

Numerous efforts have sought to quantify the amount of plastics floating on or present throughout the ocean environment, and they’ve arrived at vastly different numbers. The 5 Gyres paper1 was preceded in July 2014 by a similar study suggesting that between 7,000 and 35,000 tons of plastic are floating on the ocean’s surface.17

Anna-Marie Cook, one of two EPA lead scientists investigating the potential health effects of marine plastics, believes that estimates calculated through the use of surface trawl nets, including both of the recent global studies, vastly underestimate the scope of the problem. “Slightly more than half of all plastic is negatively buoyant, meaning that it will sink upon reaching the ocean, either into the near-shore sediment environment or to the ocean floor,” she explains. “Surface trawls do not account for the fraction of plastic in sediments, on the ocean floor, or suspended past the top few feet of the water column.”

World plastics production has experienced almost constant growth for more than half a century, rising from approximately 1.9 tons in 195018 to approximately 330 million tons in 2013.19 The World Bank estimates that 1.4 billion tons of trash are generated globally each year, 10% of it plastic.20 The International Maritime Organization has banned the dumping of plastic waste (and most other garbage) at sea.21 However, an unknown portion of the plastic produced each year escapes into the environment—instead of being landfilled, incinerated, or recycled20—and at least some of it eventually makes its way to sea.

Plastics that reach the ocean will gradually break down into ever-smaller pieces due to sunlight exposure, oxidation, and the physical action of waves, currents, and grazing by fish and birds.22 So-called microplastics—variably defined in the scientific literature and popular press as smaller than 1 or 5 mm in diameter—are understood to be the most abundant type of plastic in the ocean.

The 5 Gyres authors found microplastics almost everywhere they sampled, from near-shore environments to the open ocean, in varying concentrations, and they estimated that particles 4.75 mm or smaller—about the size of a lentil—made up roughly 90% of the total plastic pieces they collected.1

But the degradation of larger pieces of plastic is not the only way microplastics end up in the ocean. Nurdles—the plastic pellets used as a feedstock for producing plastic goods—can spill from ships or land-based sources,23 and “microbeads” used as scrubbing agents in personal care products such as skin cleansers, toothpastes, and shampoos, can escape water-treatment facilities and pass into watersheds with treated water.24 (In June 2014, Illinois became the first U.S. state to ban the manufacture and sale of products containing microbeads,25 which have been documented in the Great Lakes26 and Chicago’s North Shore Channel.27)

Due to their hydrophobic nature, persistent organic chemicals—including polycyclic aromatic hydrocarbons (PAHs),28 polychlorinated biphenyls (PCBs),29 polybrominated diphenyl ethers (PBDEs),30 dioxins,31 and DDT32—have been shown to preferentially sorb to plastics when they encounter them in the ocean.33,34

Potentially thousands of such chemicals exist in the environment,35 but researchers are limited to screening for compounds they can actually identify, Bradley says.

The extent and rate of sorption can vary widely depending on the chemical, plastic type, and other variables, but plastic particles recovered from the ocean have been found to contain pollutant concentrations orders of magnitude higher than the water from which they were collected.14,36,37

Marine organisms throughout the food chain commonly consume plastics of various sizes.38,39 The tiniest microplastics are small enough to be mistaken for food by zooplankton,40 allowing them to enter the food chain at very low trophic levels. Some larger predators are thought to confuse nurdles (which typically measure less than 5 mm in diameter) with fish eggs or other food sources.41

Once plastics have been consumed, laboratory tests show that chemical additives and adsorbed pollutants and metals on their surface can desorb (leach out) and transfer into the guts and tissues of marine organisms.14

Some researchers speculate that chemicals already present in the organism may also be able to travel in the opposite direction by sorbing to plastics in the gut, depending on the concentration gradients. Yet neither process has been proven to occur in the natural environment.

We already know that many chemicals of concern are present in the seafood we eat, particularly in higher-level predators such as tuna and swordfish.42 Research has shown that harmful and persistent substances can both bioaccumulate (or increase in concentration as exposures persist) and biomagnify (or increase in concentration at higher trophic levels) within organisms as they assume some of the chemical burden of their prey or environment. Yet again, no research has yet demonstrated the bioaccumulation of sorbed pollutants in the environment.

Three key questions remain to be determined. To what extent do plastics transfer pollutants and additives to organisms upon ingestion? What contribution are plastics making to the contaminant burden in organisms above and beyond their exposures through water, sediments, and food? And, finally, what proportion of humans’ exposure to plastic ingredients and environmental pollutants occurs through seafood? Researchers are moving carefully in the direction of answers to these questions.


Human Health Questions

Among U.S. agencies, the EPA is delving into the science to answer key questions around marine plastics and human health. In addition to convening the April meeting and producing a forthcoming white paper on its findings, the agency collaborates with and directly funds researchers in the field. Staff from the EPA and the U.S. Fish and Wildlife Service are currently developing a risk assessment to quantify the chemical loading effects of plastic litter on marine life.43 And by 2016, the EPA plans to launch a similar long-term inquiry into effects on human health, including an evaluation of outcomes such as fetal formation, says Cook.

Any study of human health effects will likely depend on the cooperation of a subject community where many types of seafood are heavily consumed. “We have to have a potential threat and a potential receptor present in a location and a community who is willing to work with us on it,” Cook says. “There are a lot of repercussions to a community to find out that their food supply is potentially contaminated.” The agency also expects to award a new four-year marine debris research contract designed to gain a better understanding of the movement, distribution, and quantity of plastics off the remote northwestern Hawaiian islands.

Researcher Chelsea Rochman of the University of California, Davis, collaborated with Cook and the EPA on a 2014 study that showed an association between concentrations of certain PBDEs in fish and levels of plastic debris accumulation in the South Atlantic Ocean.44 However, no such association was seen for concentrations of BPA, alkylphenols, alkylphenol ethoxylates, or PCBs in fish.44

Rochman is also working on a separate study funded through NOAA’s Marine Debris program. The aim of the NOAA study is to demonstrate for the first time the biomagnification in marine organisms of chemicals introduced via plastics. This highly controlled laboratory experiment involves feeding contaminated plastic pellets to mussels, feeding the mussels to sturgeon, and then testing levels of PCBs within the bodies of the sturgeon. Results are still awaiting analysis and publication.

One of Rochman’s collaborators on the project, researcher Mark Browne of the University of California, Santa Barbara, recently received a grant from the Australian Research Council for a three-year program addressing another question in the field: Beyond leaching chemicals, what do plastic particles do when they enter an organism?

Browne showed in 2008 that microplastics sized 3.0 and 9.6 µm in diameter can travel beyond a mussel’s gut and into its circulatory system and hemocytes (immune cells), where they may remain for a relatively long period of time—in his study, more than 48 days.45 A 2012 study by another group showed that microplastics taken up by mussels resulted in a strong inflammatory response.46

The implications of these findings for humans that consume organisms containing microplastics are not yet understood. Browne says his team is currently working to develop a method to test human tissues for microplastics. “We think that’s going to be a big turning point,” he says.

Ecotoxicologist Heather Leslie of VU University Amsterdam is among those concerned about the particle toxicity of microplastics themselves. Even without chemical hitchhikers, she says, plastic particles can induce immunotoxicological responses, alter gene expression, and cause cell death, among other adverse effects. “Exposed organisms then deal not only with chemical stress through multiple exposure routes, but also particle stress,” she explains. Leslie is currently studying the distribution and environmental fate of microplastics from cosmetics and other sources and potential toxicological effects on marine organisms in Europe’s multinational CleanSea Project.

A large body of literature about the mobility of nanoparticles offers a glimpse at how nano-size plastic particles may behave in the human body, Leslie says. “They can pass through the placenta and the blood–brain barrier and can be taken up in the gastrointestinal tract and lungs, potential sites where harm can occur,” she says. “There is a lot to learn about microplastics from the fields of particle toxicity and drug delivery technologies that apply to polymeric nanoparticles.”

In another example of ongoing research, Robert Hale, a professor at the Virginia Institute of Marine Science, has funding from both the EPA and NOAA to investigate how particle size, weathering, biofouling (the accumulation of living organisms on wet surfaces), and water characteristics including temperature, salinity, and organic carbon content influence both the sorption of organic contaminants to and the release of various additives from different types of microplastics.47

“You look at these simple parameters together, and it can get very complex,” Hale says. The EPA is particularly interested in evaluating the release of flame retardant additives from plastics, he notes, and may pursue development of a protocol to be used by manufacturers to provide data on chemical migration.


A Matter of Perspective?

Government, academic, and independent sources interviewed for this article almost unanimously expressed a mix of skepticism and concern toward the thought of ocean plastics posing a human health risk. Without exception, they also advocated for further research. A common viewpoint is that although definitive evidence does not yet exist for real-world human health impacts tied to marine plastic debris, this doesn’t prove the hypothesis null, nor does it mean there aren’t other valid reasons to address the long-lived plastic litter that washes into the world’s oceans every year.

Many researchers pointed to the need to maintain perspective on the issue. Human exposure to microplastics and plastic additives is more likely to stem from intact goods prior to disposal than from seafood, Thompson says. Clothing fibers make up a large proportion of the microplastic found worldwide, says Browne,48 and even drinking water and foods such as honey can be contaminated with microplastics, according to Leslie.

Kara Lavender Law, a research professor of oceanography with the Sea Education Association in Woods Hole, Massachusetts, who collaborated with Richard Thompson on a recent summary of current knowledge about microplastics,49 says that while overfishing and direct exposure to consumer plastics concern her more than the marine-plastic pathway, the latter still warrants investigation. “I think it’s something worth working on,” she says. “Just because we don’t see it doesn’t mean it’s not there.”

In the case of plastic constituents thought to affect the human endocrine system, any level of exposure, no matter the route, may be potentially harmful, says Carol Kwiatkowski, executive director of The Endocrine Disruption Exchange. Endocrine disruptors have shown evidence of a nonlinear or nonmonotonic dose response,50 meaning tiny doses may have larger effects than mid-level doses.

“Anything that interferes with hormone action potentially has an effect at a very low dose, because the endocrine system is designed to function at very small doses,” Kwiatkowski says. “So it’s possible this pathway could bring some exposure. You’d have to find some evidence that the chemicals were being carried through marine organisms and making it into people.”

From there, she says, researchers would still need to learn how any such exposures relate to or interact with other exposures to endocrine disruptors, including rapidly metabolized chemicals such as BPA and phthalates, and longer-lived additives such as flame retardants. In other words, to what extent do all these exposures add up, and how does that cumulative exposure translate to health outcomes? “It’s difficult to study additive effects,” Kwiatkowski says. “But it’s very important research to conduct.”

Nonetheless, the end goal, sources say, is not to abandon the use of plastic. “The benefits of plastics can be realized without the need for emission [to the ocean], ” Thompson says. “And for me that’s the tipping point for taking policy action.” New laws, for example, could require handling plastics more responsibly at the end of their useful life through recycling, proper disposal, and extended producer responsibility.

Rolf Halden, director of the Center for Environmental Security at the Biodesign Institute at Arizona State University, advocates for another solution: manufacturing more sustainable plastics from the start.51 “We need to design the next generation of plastics to make them more biodegradable so that they don’t have a long half-life, they don’t accumulate in the oceans, and they don’t have the opportunity to collect chemicals long-term,” he says. “There’s just no way we can shield people from all exposures that could occur. Let’s design safer chemicals and make the whole problem moot.”



1. Eriksen M, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9(12):e111913 (2014); doi: 10.1371/journal.pone.0111913.

2. EPA. Bisphenol A (BPA) Action Plan Summary [website]. Washington, DC:U.S. Environmental Protection Agency (updated 29 January 2014). Available: http://www.epa.gov/oppt/existingchemical​s/pubs/actionplans/bpa.html [accessed 28 January 2015].

3. Deanin RD. Additives in plastics. Environ Health Perspect 11:35–39 (1975); http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475198/.

4. Rochman CM, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol 47(3):1646–1654 (2013); doi: 10.1021/es303700s.

5. Rochman CM, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263 (2013); doi: 10.1038/srep03263.

6. Browne MA, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23(23):2388–2392 (2013); doi: 10.1016/j.cub.2013.10.012.

7. Chua EM, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48(14):8127–8134 (2014); doi: 10.1021/es405717z.

8. Tanaka K, et al. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar Pollut Bull 69(1–2):219–222 (2013); doi: 10.1016/j.marpolbul.2012.12.010.

9. Besseling E, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593–600 (2013); 10.1021/es302763x.

10. Thompson RC, et al. Lost at sea: where is all the plastic? Science 304(5672):838 (2004); doi: 10.1126/science.1094559.

11. Bakir A, et al. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789 (2012); doi: 10.1016/j.marpolbul.2012.09.010.

12. Bakir A, et al. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21 (2014); doi: 10.1016/j.ecss.2014.01.004.

13. Bakir A, et al. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23 (2014); doi: 10.1016/j.envpol.2013.10.007.

14. Engler RE. The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46(22):12302–12315 (2012); doi: 10.1021/es3027105.

15. Safina C. No refuge: tons of trash covers the remote shores of Alaska. Yale Environment 360, Opinion section (1 July 2013). Available: http://e360.yale.edu/feature/carl_safina​_gyre_tons_of_trash_covers_shores_alaska​/2668/ [accessed 28 January 2015].

16. de Stephanis R, et al. As main meal for sperm whales: plastics debris. Mar Pollut Bull 69(1–2):206–214 (2013); doi: 10.1016/j.marpolbul.2013.01.033.

17. Cózar A, et al. Plastic debris in the open ocean. Proc Natl Acad Sci USA 111(28):10239–10244 (2014); doi: 10.1073/pnas.1314705111.

18. PlasticsEurope. Plastics—The Facts 2013: An Analysis of European Latest Plastics Production, Demand and Waste Data. Brussels, Belgium:PlasticsEurope AISBL (2013). Available: http://www.plasticseurope.org/Document/p​lastics-the-facts-2013.aspx [accessed 28 January 2015].

19. PlasticsEurope. China Leads Global Plastics Production while Europe Ranks Second [press release]. Brussels, Belgium:PlasticsEurope AISBL (12 June 2014). Available: http://goo.gl/Xgx5Is [accessed 28 January 2015].

20. Hoornweg D, Bhada-Tata P. What a Waste: A Global Review of Solid Waste Management. Washington, DC:Urban Development and Local Government Unit, World Bank (March 2012). Available: http://goo.gl/GZec84 [accessed 28 January 2015].

21. IMO. Prevention of Pollution by Garbage from Ships [website]. London, United Kingdom:International Maritime Organization (2015). Available: http://www.imo.org/OurWork/Environment/P​ollutionPrevention/Garbage/Pages/Default​.aspx [accessed 28 January 2015].

22. Zettler ER, et al. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146 (2013); doi: 10.1021/es401288x.

23. Thompson RC, et al. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Soc 364(1526):2153–2166 (2009); doi: 10.1098/rstb.2009.0053.

24. Fendall LS, Sewell MA. Contributing to marine pollution by washing your face: microplastics in facial cleaners. Mar Pollut Bull 58(8):1225–1228 (2009); doi: 10.1016/j.marpolbul.2009.04.025.

25. State of Illinois. Governor Quinn Signs Bill to Ban Microbeads, Protect Illinois Waterways [press release]. Chicago, IL:Office of the Governor, State of Illinois (8 June 2014). Available: http://www3.illinois.gov/PressReleases/S​howPressRelease.cfm?SubjectID=3&RecNum=1​2313 [accessed 28 January 2015].

26. Eriksen M, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77(1–2):177–182 (2013); doi: 10.1016/j.marpolbul.2013.10.007.

27. McCormick A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871 (2014); doi: 10.1021/es503610r.

28. ATSDR. Polycyclic Aromatic Hydrocarbons (PAHs) [website]. Atlanta, GA:Agency for Toxic Substances and Disease Registry, U.S. Centers for Disease Control and Prevention (updated 3 March 2011). Available: http://www.atsdr.cdc.gov/substances/toxs​ubstance.asp?toxid=25 [accessed 28 January 2015].

29. EPA. Health Effects of PCBs [website]. Washington, DC:U.S. Environmental Protection Agency (updated 13 June 2013). Available: http://www.epa.gov/wastes/hazard/tsd/pcb​s/pubs/effects.htm [accessed 28 January 2015].

30. EPA. Polybrominated Diphenyl Ethers (PBDEs) Action Plan Summary [website]. Washington, DC:U.S. Environmental Protection Agency (updated 8 January 2015). Available: http://www.epa.gov/oppt/existingchemical​s/pubs/actionplans/pbde.html [accessed 28 January 2015].

31. EPA. Environmental Assessment: Dioxin [website]. Washington, DC:U.S. Environmental Protection Agency (updated 12 August 2010). Available: http://cfpub.epa.gov/ncea/CFM/nceaQFind.​cfm?keyword=Dioxin [accessed 28 January 2015].

32. EPA. DDT [website]. Washington, DC:U.S. Environmental Protection Agency (updated 18 April 2011). Available: http://www.epa.gov/pbt/pubs/ddt.htm [accessed 28 January 2015].

33. Müller JF, et al. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/ water system. Fresenius J Anal Chem 371(6):816–822 (2001); doi: 10.1007/s002160101025.

34. Pascall MA, et al. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. J Agric Food Chem 53(1):164–169 (2005); doi: 10.1021/jf048978t.

35. EPA. Persistent Organic Pollutants: A Global Issue, A Global Response [website]. Washington, DC:U.S. Environmental Protection Agency (updated 12 June 2014). Available: http://goo.gl/Pn5p7u [accessed 28 January 2015].

36. Rochman CM, et al. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS ONE 9(1):e85433 (2014); doi: 10.1371/journal.pone.0085433.

37. Mato Y, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318–324 (2001); doi: 10.1021/es0010498.

38. Davison P, Asch RG. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser 432:173–180 (2011); doi: 10.3354/meps09142.

39. Murray F, Cowie P. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217 (2011); doi: 10.1016/j.marpolbul.2011.03.032.
40. Cole M, et al. Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655 (2013); doi: 10.1021/es400663f.

41. Ellison K. The trouble with nurdles. Front Ecol Environ 5(7):396 (2007).

42. Gassel M, et al. Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre. Mar Pollut Bull 73(1):231–242 (2013); doi: 10.1016/j.marpolbul.2013.05.014.

43. EPA. EPA and U.S. Fish and Widlife Service Partner to Protect Wildlife at Hawaii’s Tern Island [press release]. San Francisco, CA:U.S. Environmental Protection Agency, Region 9 (9 September 2014). Available: http://www.epa.gov/region9/mediacenter/t​ern-island/ [accessed 28 January 2015].

44. Rochman CM, et al. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci Total Environ 476–477:622–633 (2014); doi: 10.1016/j.scitotenv.2014.01.058.

45. Browne MA, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031 (2008); doi: 10.1021/es800249a.

46. von Moos N, et al. Uptake and effect of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335 (2012); doi: 10.1021/es302332w.

47. Hale RC, et al. Ghosts in the Machine: Releases of Flame Retardants from Microplastics and Recycled Materials [abstract]. Presented at: Society of Environmental Toxicology and Chemistry North America 35th Annual Meeting, Vancouver, British Columbia, Canada, 9–13 November 2014. Brussels, Belgium, and Pensacola, FL:Society of Environmental Toxicology and Chemistry (2014). Available: http://vancouver.setac.org/wp-content/up​loads/2014/10/SETAC-Vancouver-Abstracts.​pdf [accessed 28 January 2015].

48. Browne MA, et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179 (2011); doi: 10.1021/es201811s.
49. Law KL, Thompson RC. Microplastics in the seas. Science 345(6193):144–145 (2014); doi: 10.1126/science.1254065.

50. Welshons WV, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111(8):994–1006 (2003); http://www.ncbi.nlm.nih.gov/pubmed/12826473.

51. Halden RU. Plastics and health risks. Annu Rev Public Health 31:179–194 (2010); doi: 10.1146/annurev.publhealth.012809.103714.

52. Obbard RW, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2(6):315–320 (2014); doi: 10.1002/2014EF000240.

53. Chan K. Hong Kong plastic pellets spill: Sinopec vows to clean up beaches. Huffington Post, Green section (9 August 2012). Available: http://www.huffingtonpost.com/2012/08/10​/hong-kong-plastic-pellets-spill_n_17591​19.html [accessed 28 January 2015].